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What happens to pressure when a flow
enters a side branch?
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The behaviour of incompressible side-branching flows is examined theoretically at
high Reynolds numbers and compared with direct numerical simulation at moderate
Reynolds numbers. The theoretical model assumes the branching (daughter) tube is
small compared to the main (mother) tube and that the branching angle is small. The
theory is applicable to steady and unsteady flows in two or three dimensions, and to a
broad range of flow splits between mother and daughter vessels. The first main result
of the work is that, in the vicinity of the branch, the flow adjusts to the imposed
downstream pressure in the daughter tube through a jump (a rapid change over a
short length scale) in flow properties across the daughter entrance. It is shown that,
for large pressure drops in the daughter tube, fluid is sucked in at high velocities from
the mother and thereby provides a favourable upstream feedback. This counteracts
the tendency of the flow to separate from what would otherwise be an adversely
shaped upstream wall. Increased divergence of mother and daughter tubes can thus
be achieved at high daughter flow rates without separation. The second main result of
the work is that the direct numerical simulations confirm the very rapid variation in
flow properties and show reasonable agreement with the theory at moderate Reynolds
numbers.

1. Introduction
When part of a flow in a tube is diverted to enter a side branch, how does the

pressure adapt? The conditions in the branching or daughter vessel must clearly affect
the flow in the main or mother vessel; thus parabolic, purely streamwise, dependence
of the flow cannot hold everywhere. How the flow conditions respond to the branch
is the subject of the present paper.

1.1. Background

The applications which motivated this study include physiological branching flows,
aerodynamic laminar-flow control through use of surface suction holes, flows through
pipe and duct networks, surgical by-pass grafts, engine intakes and pressure bleeding
from one surface of an airfoil or turbine blade to another. Examples of these are in
Pedley (1995), Motomiya & Karina (1984), Ellis & Poll (1996), Olufsen (1999), Paz
(1997) and Ovenden (2001). These papers cover a wide range of applications and
all involve fluid motion at moderate or, often, relatively high Reynolds numbers Re.
The general aerodynamic shaping of early generations of branching is noteworthy
in the human body (Lighthill 1972), whether from one mother tube upstream to
(typically) two daughter tubes downstream or as a side branch (small daughter) off
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Figure 1. The flow configuration for streamlined branching of a relatively small daughter
from a mother tube, with incident shear flow, in non-dimensional form.

the mother. The shaping in a healthy body is presumed to suppress or minimize
the flow separations and adverse consequences which are otherwise prone to occur
at these Reynolds numbers. Quantitative studies are few in this area and the flow
structure interaction of distensible walls may also reduce separation. Similar aspects
of wall shaping are met in the other applications, for example associated with the
detailed flow inside a suction hole, where mother–daughter interaction is important
for receptivity in connecting theory to experiments in the transition or control context
(Ma et al. 1999), and in the supply to car cooling systems.

Model investigations have been made for various branching-flow configurations.
Those in Smith (1977), Bennett (1987), Brotherton-Ratcliffe (1987), Blyth & Mestel
(1999) and Smith & Jones (2000) have relatively large daughter tubes and concern flow
effects which are almost inviscid and are examined over relatively short streamwise
length scales. While all the papers consider branching into two daughter tubes, Smith
& Jones also consider arbitrarily many daughters, with a view to the understanding
of flow through arteriovenous malformations. Slow flows are studied by Tutty (1988).
Direct numerical simulations and experiments include those described by Caro
et al. (1996), and Hademenos, Massoud & Viñuela (1996), who also address the
malformations mentioned above. Work on graft–artery junctions in Lei, Kleinstreuer
& Archie (1997), Loth et al. (1997), Paz et al. (1992), Sherwin et al. (2000) and
Doorly et al. (2002) is also relevant though the focus of the latter work is on flow
from branch to main vessel. By contrast, studies of small side branches with mother–
daughter interaction and moderate or comparatively high flow rates appear to be
rare.

1.2. Motivation and model problem

The problem we consider is that of a branch comprising a single slender daughter
tube which departs from the mother tube at a small angle, figure 1. The idealized
theoretical model we present is intended to provide insight into the fundamental flow
behaviour, since it shows the effects of the different parameters involved. From a
practical standpoint, e.g. for those faced with the design of graft and suction holes,
the theory helps to address the following questions. How much fluid is entrained
into the daughter for a given pressure drop between the mother and the daughter?
What are the criteria for avoiding separation? Do the details of the daughter flow
affect the mother flow, for example in terms of wall pressures and shears? How
much does the qualitative behaviour depend on whether the local flow is steady or
unsteady, two- or three-dimensional? Also, for relatively large typical flow rates, the
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theory sheds light on the question of how the influence of the downstream pressure
in the daughter branch can travel upstream and mate with the mother-flow pressure
properties outside.

The theory concentrates on relatively high Re values while direct simulations are
for moderate Re. It is hoped that the theory which is strictly valid only for Re → ∞
applies at finite values of Re, an aspiration for which the direct simulations can
provide a check. Agreement at moderate Re values between theory, direct simulations
and experiments in pipe and channel flows is shown in Dennis & Smith (1980), Smith
(1979), Sobey (1980), Durst & Loy (1985), Mei & Plotkin (1986) and Bhattacharyya,
Dennis & Smith (2001). To begin, the present model problem is introduced and the
theory for planar steady flow is considered, in § § 2–4. The theory is then extended
to planar unsteady flow in § 5.1 and to three-dimensional flow (with symmetry-plane
results) in § 5.2.

We show that the ‘mating’ of the daughter-branch pressure with the mother pressure
occurs through a very rapid change over a very short streamwise length scale in the
pressure and velocity at the mouth of the daughter. This abrupt pressure ‘jump’ is
supported by the combination of solid wall (underneath) and flow shear (on top).
If a relatively small overall pressure drop is imposed the flow response hinges on
interactive wall-layer behaviour with negligible outer displacement, giving the flow
solutions in both the mother and the daughter. A higher pressure drop, considered in
§ 5.3, yields a stronger ‘jump’ which produces a feedback of displacement to the wall
layer outside the branch and forces the branch mouth to act as a point or line sink.
The feedback is favourable upstream, where it counters, in terms of flow separation,
the disadvantages of wall shape in the lead-up to the daughter opening. Downstream
the feedback is adverse and can drag back some mother fluid particles that have
streamed past the opening and then deposit them into the daughter branch. Section
6 presents further comments.

2. The flow structure of the model problem
We begin with the problem of steady flow at relatively large Re. Consider a slender

side branch situated in a fixed wall and lying deep inside the incident wall layer or
other shear flow in the mother tube, figure 1. Relative to the entrance to the branch,
the wall appears flat and infinitely long (the x-axis), while the fluid appears to be of
semi-infinite extent in the normal direction, with uniform shear flow upstream. The
only relevant geometric length scales are those of the daughter branching itself; thus
we take a typical streamwise length of the branching from its inception to its opening
as the characteristic streamwise length scale �∗ of the local flow, so that this length
has a non-dimensional value of 1. In the three-dimensional case shown in figure 1,
L∗ signifies a typical spanwise length scale.

Restricting our attention to two dimensions (figure 2) for the present, we assume
that the above length scale �∗ is large compared with the typical normal extent (h∗

say) in a slender side branch. As there is no velocity scale u∗, we take the prescribed
slope λ∗ of the incident velocity profile at the surface multiplied by �∗, leaving
u∗ = λ∗�∗ as the velocity scale based on the branch length.

Non-dimensional quantities are to be used, so that the streamwise and normal
Cartesian coordinates are �∗(x, y) respectively, the corresponding fluid velocity is
λ∗�∗(u, v), the stream function is λ∗�∗2ψ and the pressure is ρ∗λ∗2�∗2p relative to the
incident zero-pressure level. The shear-based Reynolds number Re ≡ λ∗�∗2/ν∗ has
characteristic values which are taken to be large, and the constants ρ∗, ν∗ denote in
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Figure 2. As in figure 1 but for steady or pulsatile planar motion, showing the viscous
regions (i)–(iii) and the wall shapes f1–f4.

turn the density and kinematic viscosity of the incompressible fluid. The aim in this
and the next section is to construct a solution of the continuity and Navier–Stokes
equations for large Re.

2.1. Governing equations for relatively large Re

At such large Reynolds numbers, and assuming there is no significant separation,
the viscous effects required to enforce the no-slip condition only operate in a thin
layer near the wall. The width of the viscous layer and the equations that describe it
follow from an order of magnitude analysis of the Navier–Stokes equations. Thus we
require inertial forces (∼ u2/x) to balance the viscous forces (∼ Re−1u/y2). With the
assumption of a linear velocity profile near the wall (u ∼ y) and taking the x length
scale to be unity, it follows that the viscous-layer width scales as Re−1/3. Therefore the
critical branch thickness h∗ is comparable with Re−1/3�∗ for nonlinear effects (such as
a near separation) to play a substantial role, and the typical branch slopes involved
are of order Re−1/3. The representative value of u is also of size Re−1/3 while the
induced pressure p scales with Re−2/3.

Throughout the wall layer, where y = Re−1/3Y and x, Y are O(1), it follows that

(u, v, p) =
(
Re−1/3U, Re−2/3V, Re−2/3P

)
,

and the viscous-layer equations of continuity and streamwise momentum,

U = ΨY , V = −Ψx, (2.1a, b)

UUx + V UY = −P ′(x) + UYY , (2.1c)

govern the flow in terms of order-one quantities. Here Ψ (≡ Re2/3ψ to leading order)
denotes the scaled stream function, which is taken to be zero at the lowermost wall,
and the pressure response P is independent of Y from the normal momentum balance.

In the present analysis, the geometry of the branch (figure 2) is described by the
wall shape functions f1, f2, f3 and f4, and the branch opening is at x = x1 say. Thus
f1 describes the lowermost wall shape ahead of the branch opening at x1 and f2 gives
the (upper) divider-wall shape outside the branch beyond x = x1. The (lower) divider-
wall shape within the branch is specified by f3,while f4 defines the continuation of
the incident wall shape f1 into the branch. The divider shape is taken to be not too
blunt, in the sense that f2 and f3 are equal at x1+. Moreover the lowermost wall
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is continuous from mother to daughter, with f1, f4 equal at x1± while downstream
f2 � f3 > f4 because of the divider thickness and the open daughter branch.

For the computations we consider as specific choices for f1 to f4 the following:

f1 = −h1x
2, 0 � x � x1,

f2 = h2(x − x1)
2(2 + x1 − x)2, x1 � x � 2 + x1,

f3 − f4 = h1x
2
1 , x � x1.


 (2.2)

Here the middle equation for the shape f2, although restricted to x � 2 + x1 for the
present work, could be extended to larger x values if necessary, depending on where
the downstream boundary condition on the mother flow is set. The starting condition
upstream represents the undisturbed state,

U → Y, V → 0, P → 0 as x → −∞. (2.3a)

The boundary conditions for all the flow outside the branch, in regions (i) and (ii) of
figure 2, are

U = V = 0 at Y =

{
f1(x) for x < x1, (2.3b)

f2(x) for x > x1, (2.3c)

U − Y → 0 as Y → ∞, (2.3d)

for no slip and no far-field displacement respectively. The constraint of zero
displacement at large normal distances in (2.3d) applies here because the current
representative streamwise length scale is much less than the representative thickness
of the whole large-scale incident flow of which U in (2.3a) gives the relatively near-
wall part. The flow inside the branch in the daughter region (iii) must satisfy the
no-slip conditions

U = V = 0 at Y = f3(x), f4(x), for x > x1. (2.4a, b)

In addition the fluid pressure is prescribed at a downstream station inside the daughter
branch, written as x2 say, with x2 > x1. So

P − = P∞ at x = x2 (2.4c)

for the side-branch flow (iii), where P∞ is a given constant pressure level, taken
to be less than the upstream level of zero. The superscripts ± where used are to
distinguish between flow quantities above and below the divider in regions (ii) and
(iii) respectively.

The mass flux entering the branch (iii) from the mother (i) is a basic unknown
(corresponding to Ψ = C, an unknown constant, on Y = f3(x)) and depends on
the downstream pressure level imposed in (2.4c). It is directly related to the relative
height a1 of the dividing streamline and is measured from the initial divider level for
convenience.

2.2. Conditions on the pressure

At almost all streamwise stations the flow properties have a parabolic nature locally
in the positive x-direction, as long as the velocity component U remains positive
or zero in order that separation (flow reversal) does not occur. The scaled pressure
P is unknown but can be determined by a forward-marching integration in x from
the starting value of zero in (2.3a). That raises the question however of how the
(independent) downstream pressure level P∞ in (2.4c) can be achieved, given the
absence of upstream influence in general.
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The explanation concerns the starting conditions for regions (ii) and (iii), and the
flow very close to the branch opening, which has a non-parabolic nature and allows
upstream influence to enter. The latter flow provokes a streamwise ‘jump’ in pressure
and velocity across the branch opening (the daughter entrance) in general, when
viewed from the order-one scale of x, i.e. there is a very rapid change over a very
short length scale. The strength of that ‘jump’ at the upstream end of the branch
depends on (2.4c) prescribed at the downstream end. Thus the Kutta-like condition
(2.4c) downstream is accommodated by means of an upstream influence which spreads
to the branch opening (although no further than that) and which indeed is at its most
rapidly varying at the branch opening. This is the most unusual aspect of the present
branching flow structure.

In more detail, the interior of the ‘jump’ at the branch opening involves a local
region of small extent O(Re−1/3) in both the streamwise and normal directions. The
interior velocities are O(Re−1/3) from continuity and from the incident flow speeds in
region (i), and so the typical pressure is O(Re−2/3). Thus here

u ∼ v ∼ Re−1/3, p ∼ Re−2/3, with x − x1 = Re−1/3X.

Hence the response here is mainly inviscid and the interior controlling equations are
the Euler equations, for X ∼ 1. These lead to conservation of the scaled mass flux and
vorticity along the streamlines of the interior region, with the vorticity distribution
being determined by the shear ∂U/∂Y incident from the longer-scale region (i)
upstream at x = x1−, and likewise for the mass flux. The appropriate boundary
conditions include those of tangential flow at the solid walls, which locally appear
parallel (at Y = f1(x1) throughout and at Y = f2(x1) = f3(x1) over a semi-infinite
streamwise range). So in effect

Ψ = 0 at Y = f1(x1) for all X,

Ψ = C at Y = f2(x1) = f3(x1) for X � 0,

where the branching starts at X = 0. The additional requirements are of matching
upstream to the incident velocity and pressure from (i) at x1−, and matching in the
far field to Ψ ∼ 1

2
Y 2 + O(1). The flow is assumed to enter and leave this Euler region

unidirectionally but with an overall displacement of its streamlines and hence its
vorticity distribution and pressure, consistent with the above boundary conditions,
and with smooth attached flow in between. Substantial separation is excluded. It
is assumed that the no-slip condition at the flat bottom of the Euler zone along
Y = f1(x1) is satisfied by means of an attached thin viscous sublayer, and similarly
along both sides of the divider Y = f2(x1) = f3(x1), subject only to minor local
separations at most. Fuller details are analogous with those in Bowles & Smith
(2000), see also Smith & Jones (2000), Jones & Smith (2003). Again, these induced
viscous sublayers form downstream the beginnings of the Blasius-like effects on the
longer scale described in the next subsection.

Vorticity conservation is equivalent here to the classical Bernoulli property on the
scaled pressure. Thus from the conditions holding at the upstream and downstream
ends of the interior Euler region we have the requirements

at x = x1 ±
{

Ψ is conserved along streamlines, (2.5a)

P + 1
2
U 2 is conserved along streamlines, (2.5b)

on the ‘jump’ at the branch opening, viewed across x = x1 ± . These conditions
complete the longer-scale flow problem by allowing for the ‘jump’ at the branch
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Figure 3. A direct simulation for the geometry (2.2) with a prescribed mass-flow shift or
relative height a1 = 0.625. Here Re = 222.

opening, in order to satisfy (2.4c) further downstream. The conditions also reflect
the fact that the value C of Ψ at the inner divider wall f3 is unknown in advance
(whereas Ψ is zero along f4), corresponding to the unknown mass flux entrained into
the branch from the oncoming motion upstream.

Whilst the theoretical development preceded the computational work (the latter is to
be discussed fully in § 4), we illustrate the very rapid change in pressure which occurs
even at moderate Re by showing figure 3, for the purpose of motivation. Figure 3
presents the variation in pressure along the mother and daughter surfaces f1 to f4.
The computation is for Re = 222 with a scaled daughter mass flow corresponding
to a relative height a1 = 0.625; see also § 4. For this condition, the stagnation point
is a very short distance along the upper divider surface f2 from the opening as can
be seen from the plot of the stagnation streamline and two neighbouring streamlines
below the pressure curves. The rapid variation in pressure is clear.

2.3. How the pressure ‘jump’ is accommodated by the flow structure

Two features enable a streamwise ‘jump’ (rapid local variation) to occur at increased
Re, namely the uniform shear flow (∂u/∂y → 1) in the far field and the presence
of the lowermost solid wall (f1 or f4). The latter is able to support any large
local pressure variation ‘underneath’, while the uniform shear flow allows a pressure
‘jump’ to be consistent in the far field ‘on top’ by means of the large inertial force
v∂u/∂y ∼ −∂ψ/∂x balancing the large pressure gradient −∂p/∂x. Thus an order-one
Ψ ‘jump’ is incorporated which is much less than the typical large Ψ values ∼ 1

2
Y 2
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at large Y throughout the ‘jump’ and outside it. It follows that the displacement
constraint (2.3d) can be maintained across the ‘jump’. By contrast, a uniform velocity
in the far field would be insufficient to support such a pressure ‘jump’, at least from
region (i) to region (ii). (Incidentally, the exact solution for the Euler flow in the
interior of the ‘jump’ is identical to that of Jones & Smith (2003) if the incident
profile U at x1− is entirely linear. Their physical setting and that in Smith & Jones
(2000) are quite distinct from the present configuration, however. Smith & Jones
consider a set of larger daughter tubes in predominantly inviscid flow, without the
present engulfing of a daughter tube by near-wall shear flow). Again, the streamwise
‘jump’ can arise only at the branch opening, not inside the branch (iii) or in the
outside flow (i) and (ii), or at a trailing edge in the case of a graft-like configuration.

The overall flow problem is inherently nonlinear and requires computation (§ 3).
We suppose the lead-up (region (i)) to the branch opening to be not so severe as
to provoke separation and hence as discussed in § 2.2 there is no upstream influence
ahead of the opening. Also, the scaled pressure along the lowermost wall is taken to
fall across the ‘jump’ , so that P − at x = x1+ is less than the value P̄ of P at x = x1−,
to keep the flow attached there. The pressure ‘jumps’, which leave P̄ �= P + �= P − in
general at the station x1, also leave the starting profiles U for the regions (ii) and (iii)
non-zero next to the walls f2, f3, f4 and therefore induce a Blasius-like development
just beyond x1. This development has to be accommodated in the computations. The
non-zero U value at the lowermost wall in particular is [2(P̄ − P −)]1/2 at x1 in view
of the ‘jump’ (2.5b).

2.4. Limiting analysis

Increasingly negative values of the scaled end pressure P∞ correspond to increased
suction into the branch. Then the relative height a1 of the dividing streamline is
expected to become large, for a fixed branching shape, as the amount of oncoming
fluid drawn from the mother tube into the daughter branch increases. In consequence,
at the ‘jump’ most of the incident vorticity (shear) is unity and the velocity profile is
predominantly linear. Hence there is some simplification, as follows.

First, if U±, π± denote the scaled streamwise slip velocities on the divider and the
pressures just downstream of the ‘jump’, respectively, and U = U0 is the oncoming
velocity profile from region (i), then the general ‘jump’ conditions from (2.5a, b) yield

π+ + 1
2
(U+)2 = π− + 1

2
(U−)2 = P̄ + 1

2
U 2

0 (Y0), π− + 1
2
U 2

w = P̄ .

Here Y0 = f2(x1)+a1 gives the dividing streamline position and Uw is the slip velocity
induced locally at the lowermost wall f4 for x = x1 + . For large values of P∞
the velocity profile above the divider must be unaltered to leading order, because of
(2.3d). This implies that U+ is negligible, and U0 is approximately Y . Also, since a1 is
large and f2(x1) is only O(1), Y0 is approximately a1. So the above gives

π+ ∼ P̄ + 1
2
a2

1 (2.6)

to a first approximation. Underneath the divider, at the entry to the daughter branch,
the near-unit shear requires a velocity profile Y −f4(x1)+Uw and therefore U− = h+Uw

with h denoting the initial branch width (f3 − f4)(x1). Eliminating the pressure
difference gives the balance a2

1 = (U−)2 − U 2
w, which is h2 + 2hUw. However, because

a1 is large and h of order one,

Uw ∼ 1
2
a2

1h
−1 (2.7)
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must be large. Hence also, from the above equations,

π− ∼ − 1
8
a4

1h
−2 (2.8)

is very large. It is interesting that the pressure rise π+ in (2.6) is associated with
bringing fluid as if to rest just on top of the divider, with the mother flow in (ii)
then being an undisturbed shear motion in effect (as if without any branching at
all). In contrast, the pressure fall π− in (2.8) is produced by an effectively uniform
entry motion into the daughter, of speed given by (2.7) to preserve the mass flux. The
predictions (2.6)–(2.8) are found to be close to the computational results, as figure 4
below shows.

Second, because the streamwise approach to fully developed motion in the daughter
is often fast, conservation of mass and momentum directly between the branch
opening at x1+ and the end station x2 now points to the predictions

(π− − P∞) = 6a2
1(x2 − x1)

/
h3, τ− = 3a2

1

/
h2 (2.9)

for the approximate pressure drop and wall shear along the daughter branch,
respectively. The upper and lower wall shears of the daughter are approximately
the same. Here (2.9) applies provided the daughter width is unchanged, P∞ and a1

are large and the distance x2 − x1 is not too small. The predictions in (2.9) also agree
with the computational results below. The wall shear here is − 1

2
hP ′ (x) . We observe

that the trends in (2.6)–(2.9) involve an unusual combination of high- and low-inertial
flow features.

3. Solution for planar steady branching properties at large Re

The flow in each area (i)–(iii) was resolved numerically with a finite-difference
procedure similar to those in Smith & Timoshin (1996) and Bowles & Smith (2000). A
Prandtl transposition, with Y −fn (n = 1, 2, 4 respectively), replaced Y for convenience,
and in area (iii) the transposed Y was also normalized with the local daughter branch
thickness f3 − f4. The procedure applies three-point centred differencing in Y and
three-point backward differencing in x, for (2.1c), and similarly for (2.1a, b). This
yields the velocities and pressure at a discrete station x implicitly from the known
solutions at the two previous stations. Forward motion with U positive is assumed.
Second-order accuracy in x as well as Y is obtained by solving the implicit equations
iteratively. The solution behaviours immediately after the branch-opening ‘jumps’ (i.e.
at x = x1+) are accommodated by two-point streamwise differencing to cover the
first step only; the solutions are found to merge closely with the Blasius forms there.
The solution is marched forward successively through (i) and then separately through
(ii) with (2.3c, d) holding and through (iii) with (2.4a, b) holding. Typical grids used
have x, Y steps of 0.005, 0.02, with a transposed Y range of 10, and finer grids were
adopted as checks.

The ‘jumps’ in the pressure P and accompanying profile changes in Ψ, U at the
branch entrance are incorporated as follows during each sweep. The requirements
(2.5a, b) correspond to first a uniform shift by a1 in all the Y values with the oncoming
velocity profile U = U0 from region (i) otherwise unchanged as the entrance is passed
over, and, second, an adjustment in the U profile above and below the divider to allow
for the outer constraint in (2.3d) and the total mass flux respectively. For a prescribed
a1 value and given oncoming pressure P̄ , the above alterations in the U profile, which
are made consistently with (2.5a, b), act to fix the two pressures P ± ≡ π± and slip
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Figure 4. Steady planar-flow results for the wall shaping (2.2). (a, b) Shear τ (at walls
f1, f2, f4) and pressures P,P +, P − versus x, in regions (i)–(iii) respectively, for two values of
a1. (A close-up of the results in (i) is contained in figure 12a.) (c) The velocity profiles on either
side of the ‘jump’ at x1, for the two values of a1 used in (a, b). (d) P∞, π± plotted against a1.
Here x2 = 2.625. Comparisons with (2.6)–(2.9) (denoted by r) are included.

velocities U± (at the divider) at x1+ in view of (2.5b). Here the normal compression or
expansion of the velocity profile in order to satisfy (2.5a, b) is handled computationally
by interpolation. Then, given a1, the flow solutions for the velocities and pressures
in areas (ii) and (iii) are marched forward to the downstream ends, in particular to
x = x2 in the daughter branch (iii). There the pressure solution P − is compared with
the end value (2.4c). An overall iteration on a1 can be performed to satisfy (2.4c)
directly but in practice the inverse procedure of setting a1 and then deducing the
associated P∞ value is far more productive here, given that the relationship between
a1 and P∞ is found to be single-valued.

The numerical results presented in figure 4(a–d) are for the specific branching
geometry (2.2) under various branching end pressures P∞. The results show the
induced pressures, wall shears τ (≡ ∂U/∂Y ) and the dependence of a1 and other
quantities on P∞. Analytical results from (2.6)–(2.9) are denoted by ‘r ’, for comparison.
There is no flow separation in the mother or daughter results shown here, although
in other computations separation was encountered within region (i) for more severe
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slopes in the lead-up shape f1 and within (ii) for shapes f2 that produced excessive flow
divergence. The ‘jumps’ across the branch-opening station x1 are apparent throughout,
followed by viscous-layer growth on each side of the divider just downstream and an
often rapid approach thereafter to fully developed flow within the daughter branch.
The divider starts at Y = 0, x = x1. Again, the flow solution in (iii) depends only
on f3 − f4, not on the individual shapes f3, f4, and so the daughter (iii) could be
curved or straight for instance. The values x1 = 1.5, x2 = 2.625, h1 = 1

2
, h3 = 3

are taken. In figure 4(a, b) the flow solutions, for shifts a1 = 0.5625 and 2.8125,
show the wall shear reducing in the lead-up region (i) under an induced adverse
pressure gradient. After that the mother flow in (ii) attaches firmly to the front of
the constriction f2 with a favourable pressure gradient and increased wall shear,
before tending towards detachment beyond the maximum constriction point and then
returning to undisturbed flow downstream. In the daughter (iii) the flow approaches
the fully developed Poiseuille form downstream under a favourable induced pressure
gradient. The flow in (i) is not affected by the value of a1, whereas that in (ii), (iii)
clearly is affected. Figure 4(c) presents, for the two cases above, the velocity profiles
U0, U± at x = x1 ± . These emphasize the velocity ‘jumps’ across the branch entrance.
The increased response of the entry velocity u1 for the larger a1 value stands out.
Figure 4(d) summarizes the properties found over a range of a1 or P∞ values. It shows
π± and P∞ plotted against a1, verifying that the P∞–a1 relation is single-valued, and
it also compares with the analytical results (2.6)–(2.9).

4. Direct numerical simulations
4.1. Method

Direct numerical simulations of the Navier–Stokes equations were performed using
the commercial package fluent (5.3) for the planar steady motions described above.
The algorithm chosen utilized a second-order upwind variant of the well-known
simple pressure-correction method. The lower part of the computational domain was
defined by the functions f1 to f4 of (2.2) over the interval 0 � x � 2.625. The
inflow velocity profile was specified as a constant shear, and the upper computational
boundary was prescribed as a moving wall (zero normal displacement). Values for
the outflow mass flux ratio between mother and daughter tubes were prescribed
according to the required amount of deflection (a1) of the oncoming streamlines.
Physical dimensions for the computational domain correspond to a height of 1.5 at
the computational domain inflow, a length from inflow to the daughter tube (x1 in
the theory) of 1.5, and an overall length of 2.625 in the x-direction. Using a value
of kinematic viscosity ν = 1, the velocity on the top surface of the computational
domain was prescribed to provide Reynolds numbers of either 500 or 222 based on
the velocity slope (denoted λ∗ in the theory).

The boundaries of the computational domain are shown in figure 3 referred to
earlier. Mesh refinement studies were performed to determine the resolution required
to obtain a converged solution. There is a local geometric singularity in curvature
corresponding to the upper boundary of the daughter, defined by functions f2, f3,

where it was expected that the solution would be ill-defined, and this is shown by the
results. Mesh refinement simply reduces the extent of this region, and its impact on
the computations is confined to a very small, mesh-dependent region. A conformal
quadrilateral mesh was used, highly stretched in the normal direction to achieve good
resolution in the daughter for a prescribed number of elements.
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Figure 5. Tracks of 20 particles, half of which are released above the streamline
corresponding to a1 + daughter height, for a1 = 2.8125,Re = 222.

4.2. Results and comparisons

The results are presented in figures 5–8, for the branching shape of (2.2), together
with comparisons, while figure 9 is to allow further comparisons with the theory to
be made. The Reynolds numbers Re used in figures 6–8 are 222 and 500, which were
set by taking �∗, ν∗ and ρ∗ as unity and prescribing the incident velocity slope λ∗ as
222 or 500. The streamline height a1 imposed in these cases is either 2.8125 or 0.625,
and the unscaled height of the daughter inlet is fixed at 0.1417 for all three cases.

In scaled terms accounting for the Re−1/3 factor the cases of figures 6–8 are
associated in turn with values of h1 equal to 0.3809, 0.3809 and 0.5 in the theory, with
corresponding a1 values of 2.8125, 0.625 and 2.8125. So, whereas the case in figure 8
is covered by figure 4’s theoretical results, we include in figure 6 the theoretical results
for h1 = 0.3809; for that h1 value the theoretical results in figure 6 are based on the

Figure 6. Direct simulations and comparisons; inlet height is 0.1417 in terms of y∗; h1 in (2.2)
is 0.3809 here. Parameters λ∗ and a1 are 222 and 2.8125 respectively. (a) Comparison between
asymptotic theory and Navier–Stokes computation of flow in model geometry (cf. figure 2 and
equations (2.2)). The computations show that in the immediate vicinity of the divider, the wall
shear stress on the lower boundary (f1(x) continuing to f4(x)) abruptly rises before falling
rapidly to a nearly constant level within 10% of the theoretical prediction, as the daughter
flow becomes established. On the flow divider, the stagnation point in the computations is
on the upper surface (i.e. f2(x)) downstream of the apex at x ≈ 1.85, where the wall shear
stress magnitude is shown to first approach zero. Downstream of the stagnation point on this
boundary, the computed wall shear stress ‘signature’ of the developing flow is very similar
to that predicted by theory, although with a spatial offset corresponding to the displacement
of the stagnation point from the apex of the divider. Concerning the comparisons within
the daughter, part of the flow entering the daughter is entrained back upstream around the
flow divider (cf. figure 5), and the computed wall shear stress indicates a singularity on the
sharp divider apex. For the given parameters, a very limited region of flow reversal occurs
on the upper daughter boundary (f3(x)), with the wall shear dipping to near zero as the
flow reattaches at a value of x about 1.52 before rising to merge with the level found on the
lower daughter boundary f4(x) as the flow is established. (b) Comparison between asymptotic
theoretical prediction of pressure jump and Navier–Stokes computational solution. (c) Detail
of comparison between asymptotic theoretical prediction of pressure jump and Navier–Stokes
computational solution.
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scaled wall shears and pressures when a1 is 2.8125. Figure 9 shows the scaled shears
and pressures at the downstream end x2 in the daughter side-branch over a range of
a1 values, accompanied by the two direct simulation results.

The comparisons are encouraging. There is good qualitative agreement on the
general flow structure and on the wall shear and pressure responses throughout the
mother and daughter flows. This adds credence to the pressure ‘jump’ phenomenon
anticipated in the theory for increased Re. There is also evidence of both low and
high suction pressure effects arising in the direct simulations. We consider further the
qualitative and then quantitative aspects of the comparison next.

Figure 5 shows pathlines of particles released on either side of the flow dividing
streamline for a1 = 2.8125, Re = 222. Note that for this value of a1 the daughter tube
acts as a significant sink, and there is a local region of backward flow entrainment
from the mother which enters the daughter tube. Thus the boundary layer on the
boundary f2 of the mother commences further downstream, beyond the stagnation
point which occurs at approximately x = 1.9. This is clearly shown by the comparison
of figure 6 below, where the form of the shear stress predicted by the theory agrees
closely with the computation, but the latter curve appears shifted downstream to
account for the displaced stagnation point. A similar phenomenon occurs in the cases
of figures. 7 and 8 though to a lesser extent.

Figure 6 below also compares the pressure levels for the computation and theory
and then shows in more detail the comparison of pressure predictions for the mother
tube from theory and computation with a1 = 2.8125 and Re = 222. Agreement is
good for the pressure variation in the mother tube; in the daughter tube, the high
suction peak generated by the additional flow entrained backwards into the daughter
produces an offset in the computational pressure results curve compared with the
theoretical prediction, figure 6(b).

Now concerning the quantitative predictions, first we consider again the direct
simulations in figure 6(a–c) which are for Re = λ∗ = 222, a1 = 2.8125, h1 = 0.3809.
The dimensional computations here have already been rescaled by (λ∗)4/3 for pressure
and λ∗ for wall shear stress. (Fuller details are presented in the caption to the figure.)
The agreement can be seen to be quite good quantitatively. A significant sink effect
is also evident, nevertheless, resembling that studied in § 5.3 later.

Second, the simulation in figure 7(a, b) again has Re = λ∗ = 222, h1 = 0.3809
but a1 = 0.625. (The results here are not scaled, but rescaling could be performed
as above.) With this lower mass flux entrained into the daughter, the stagnation
point on the flow divider is still located on the outer wall, but is nearly on the apex
of the divider. The wall shear and pressure (figure 7a, b) in the mother region (i)
ahead of the branching here also show signs of the favourable influence of increased
relative suction as described in § 5.3, after the adverse geometrical influence further
upstream. The wall shear initially decreases, then increases, in line with the theoretical
predictions in figure 12 below. The overall pressure drop in the daughter implied
theoretically if the increased suction effect is ignored is about 79% of that in the
simulation, but allowing for the abrupt behaviour very close to the branch entrance
in the simulation the percentage rises to about 99%. Again, the ratio of minimum
pressure in region (ii) to that in (iii) is about 30% in both the simulation and the
theory, and the end pressure and wall shear results at this a1 value are in keeping
with the graph in figure 9.

Third, the simulation in figure 8(a–c) showing wall shear, pressure and velocity
vectors for Re = λ∗ = 500, a1 = 2.8125, h1 = 1

2
exhibits even more signs of the

increased suction effects of § 5.3 below. (Again the results here are in unscaled form.)
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Figure 7. As figure 6 but Re = λ∗ = 222, a1 = 0.625. (a) Wall shear stress magnitude
distribution from computational solution of Navier–Stokes equations. Daughter flow rate is
lower than for figure 6 and corresponds approximately to streamlines of figure 2. Stagnation
point occurs nearly on the flow divider. (b) Wall pressure distribution from Navier–Stokes
computation corresponding to (a). With the much lower proportional flow rate in the daughter,
compared with figure 6, the pressure drop in the daughter is more comparable with that in
the mother.

A small recirculation zone is found in figure 8(c) on the lower surface of the flow
divider. The upstream mother wall shear rises almost throughout region (i), while
the wall pressure there falls dramatically, especially near the daughter entrance,
where it contributes about 300–320 × 103 of the total 553.94 × 103 pressure drop:
see figures 8(a, b) respectively. The remaining 233–253 × 103 drop compares not
unfavourably with the predicted 200 × 103 drop based on the theory in § 2 and figure
4(a, b) in particular, and likewise for the daughter wall shears and pressure gradients
in figures 4(a, b), 8(a, b), even though the theory in § 5.3 still needs completion very
close to the daughter inlet. The stagnation point on the upper surface of the flow
divider at an x value of approximately 1.8 is evident in figure 8(a), whereas the
recirculation region on the lower surface of the divider is responsible for the initial
sharp dip in shear stress there. The enhanced suction effect overall for this case, figure
8(a–c), is due to the inlet height being fixed and the need to maintain the mass flux
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in (2.2) is 0.3809, for end shears τ−
∞ and pressures P∞ in the daughter side branch (iii) as a1

varies. This includes the values from the simulations in figures 6 and 7, shown as circles.

ratio as the Reynolds number is increased. In consequence a marked increase in flow
reversal is observed in the mother region (ii) above the daughter in that case; compare
the simulation in figure 8(a–c) with the theory for region (ii) as depicted in figure
12(c) later.

5. Extensions to unsteady, three-dimensional or increased-suction flows
Virtually the same argument, structure and properties as in § 2 hold also for locally

unsteady flow (§ 5.1) and locally three-dimensional flow (§ 5.2) at high Re. Again, all
flows also produce an inviscid Euler zone further out, of streamwise and normal
length scale O(1), whose role thus far is linear and so is passive in response to the
induced wall pressure along f1, f2. This outer Euler zone however becomes nonlinear
and active for stronger suction pressures (§ 5.3).

5.1. Planar unsteady flows

The theory extends to unsteady flows as follows, taking account of the branch-opening
‘jumps’ as well as testing the applicability of the results of § 2.4 for increased suction
pressures in the daughter branch.

The relevant scale for the time t∗ is 1/λ∗ times Re1/3, for (say) pulsatile motion
upstream in the mother tube or pulsatile end pressure imposed in the daughter branch.
Here t∗ = Re1/3T/λ∗. Then (2.1a, b), (2.3b–d) and (2.4a–c) continue to hold for the

Figure 8. Continued
position of the stagnation point on the upper surface of the divider relatively unchanged.
Flow reversal on the under surface of the divider f3(x) downstream of the apex is however
more extensive here, with reattachment seen to occur at x near 1.6. (b) Navier–Stokes
computational solution for pressure distribution. (c) Velocity vectors near the flow divider.
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input U at x = 0. (c) For a prescribed P∞ value (−30.666) and pulsating input U at x = 0.

time-dependent unknowns with P∞ possibly depending on T , while (2.1c) must be
enlarged to include a temporal derivative, giving

UT + UUx + V UY = −∂P

∂x
(x, T ) + UYY . (5.1)

The upstream condition (2.3a) may be replaced depending on the incident motion.
The branching geometry is assumed to be fixed. The jump conditions still apply
exactly in the form (2.5a, b) because the balances within the short interior region
surrounding x1 are quasi-steady over the present time scale. The relative height a1

which dictates the amount of mother fluid entering the daughter is now dependent
on T , however. The unsteady flow here is supposed to be free of separation.

The computational method was extended to unsteady flow by use of a Crank–
Nicholson procedure for marching in T , to preserve second-order accuracy. At each
time level the spatial sweeping was performed much as for the previous steady
case. The initial state was taken as a computed steady-flow solution, followed by
time-marching which took steps of 0.004 typically.

Results for three representative unsteady forcings are presented in figure 10(a–c):
(a) for pulsating end pressure P∞(T ) or relative height a1(T ) with steady incident
mother flow; (b) for pulsating incident flow and a prescribed pulsating relative height
a1(T ); (c) for pulsating incident flow and a prescribed end pressure P∞(T ). In cases
(a) and (b) we prescribed a1(T ) in order to find the end pressure needed to produce
a given influx into the daughter, from a steady or unsteady mother flow. For case (c)
the required P∞(T ) variation was satisfied numerically by means of Newton–Raphson
iterations on a1(T ) at each time level. In figure 10(a–c) the wall shaping is as in (2.2)
but with h1 = 1

3
and h2 = 0 to focus on unsteady rather than constrictional effects.

In more detail, figure 10(a) has the incident profile U = Y at x = 0, and the relative
height a1 is prescribed as b1(1 + b2 sin ωT ) with b1 = 2, b2 = 0.4, ω = π. The
results show the wall-shear and wall-pressure distributions at selected times and the
temporal evolution of the representative pressures π±, P∞, P +(2.4375) (denoted by
P ++) and wall shear τ−(x2) (denoted by τ−

∞ ). The pressure gradients produced in (ii)
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and (iii) are always favourable but pulsate, and indeed all the branched flow appears
to settle soon into a nonlinear pulsating state. The pulsating end pressure P∞ in (iii)
is relatively large and negative, while in (ii) the spatial pressure variation is much
less, as the closeness of π+, P ++ indicates, because the velocity profile at the start
of (ii) differs comparatively little from that of uniform shear (in line with large-a1

behaviour) and h2 is zero. In Figure 10(b) the incident U is set as the pulsatile profile
Y + b3 sin(πT )Y exp(−Y ), with b3 = 1

2
, and a1 is prescribed as in figure 10(a) except

that now ω = 2π. The solution soon acquires a doubly periodic form involving the
two forcing frequencies π, 2π, as the temporal variations of π±, P∞, and so on, show.
Figure 10(c) is for the same incident pulsatile profile as in figure 10(b) but P∞ is
prescribed as a constant. The solution for the relative height a1, as well as π±, etc.,
is shown versus T . The pulsations of a1 and of the wall shear in (i) at the branch
opening are quite small compared with the majority of the pressure pulsations, due to
the imposed uniform end pressure. Calculations have also been performed for other
pulsing incident profiles and they lead to the same trends.

Stronger suction pressures −P∞(T ) are again of interest, corresponding to large
a1(T ) values. Since the ‘jump’ properties remain quasi-steady the results in (2.6)–(2.8)
continue to apply exactly then. The working approximation (2.9) also holds in many
cases. Comparisons shown in figure 10(a) support the predictions (marked again
by ‘r ’) for large a1(T ) values and enhanced suction pressures, and the results in
figure 10(b, c) clearly have the same trend also.

5.2. Three-dimensional branching properties

Three-dimensional side-branching motion is described by virtually the same flow
structure as in the planar case. Suppose first that the spanwise z∗ length scale L∗ of
the branch is comparable with the streamwise one �∗; see figure 1. Then the flow-
structural argument applied in three dimensions, with a spanwise velocity component
given by

w∗ = λ∗�∗(Re−1/3W + · · ·), with z∗ = �∗z,

leads to the controlling equations

Ux + VY + Wz = 0, (5.2a)

UUx + V UY + WUz = −Px(x, z) + UYY , (5.2b)

UWx + V WY + WWz = −Pz(x, z) + WYY , (5.2c)

instead of (2.1a–c). All the constraints in (2.3)–(2.4) continue to hold here provided
x, z dependence is allowed for in f1 and f2, and W tends to zero in each condition
(except possibly (2.4c) which is imposed on the pressure). The position x1 of the
branch entrance and the suction pressure P∞ also depend on z in general.

The pressure and velocity ‘jumps’ across the three-dimensional branch opening
remain quasi-planar and apply in the direction normal to the opening curve x1(z)
in the x, z planform. In the tangential direction by contrast the ‘jumps’ are zero, i.e.
the solution is continuous. These properties follow from the quasi-planar nonlinear
inviscid balances (analogous to those in § 2.2) in the short-scaled interior region near
the branch opening. In addition the relative height a1 depends on z now. The above is
for a branching with a round planform in x, z, for example, and for two-dimensional
incident flow as in (2.3a) or three-dimensional with W non-zero. The cross-section of
the daughter branch at a fixed x station is of order unity in z but small in y.
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The flow problem (5.2a–c) with (2.3)–(2.4) (extended as above) is a computational
one which is very difficult to solve accurately, with or without separation, because
of the extra spatial dimension and global nonlinear upstream influence. The latter is
due to three-dimensional free interaction as in Smith (1976, 1983) and Smith, Sykes
& Brighton (1977), additional to the upstream influence inherent in the ‘jump’, and it
makes the flow problems elliptic both in the mother regions (i),(ii) and in the daughter
region (iii) beyond the opening ‘jump’.

If the typical spanwise scale L∗ is large compared with �∗ then the z-derivatives can
be neglected in (5.2a, b), leaving the entire flow quasi-planar for U, V and P . Then the
solutions of earlier sections apply, with nonlinear ellipticity being suppressed, while
W follows from (5.2c) with negligible WWz and with Pz given by the quasi-planar
solution at each z station.

Suppose instead that the spanwise scale L∗ is relatively small. This corresponds
to a branch whose x, z planform is longitudinal in the streamwise direction, and
whose y, z cross-section is closer to being round. Then the typical |W | is reduced
in proportion, for continuity, and the spanwise variation in the pressure response
likewise reduces for the spanwise momentum balance, while other quantities remain
of order unity. Hence (5.2a–c) still control the flow but with no Px term in the mother
regions (i),(ii); also Px is replaced in the daughter region (iii) by an unknown pressure
gradient P ′

0(x) which is independent of z. The nonlinear ellipticity is suppressed for
such longitudinal branching motion.

The flow calculation along a symmetry plane (z = 0 say) then becomes well-posed.
There

W ∼ zW̄ (x, y)

say, and so the longitudinal motion reduces to the form

Ux + VY + W̄ = 0, (5.3a)

UUx + V UY = −P ′
0(x) + UYY , (5.3b)

UW̄x + V W̄Y + W̄ 2 = −Q̄(x) + W̄YY . (5.3c)

Here the velocity components U, V are evaluated at z = 0 and depend only on x and
Y, while P ′

0 is identically zero in (i),(ii) and zQ̄ signifies the unknown scaled spanwise
pressure gradient. Three-dimensional flow is provoked by the short spanwise length
scale, so that a substantial streamwise pressure gradient is precluded in regions (i),(ii)
(but not in the contained region (iii)) as it would also act over larger spanwise scales
there. Hence the streamwise pressure ‘jump’ P0 across x1 from (i) to (ii) affects the
pressure level in region (ii) but not the pressure gradient there.

Numerical solutions of (5.3a–c) were derived subject to the extensions of the
boundary conditions (2.3)–(2.4) mentioned earlier in this section. In particular W̄

is conserved along a symmetry-plane streamline as it passes across the ‘jump’ at the
branch opening. The computational method used was an enlargement of that in § 3.1
to accommodate the extra momentum equation (5.3c) and the linkage to U, V via the
term W̄ in (5.3a), and similar meshes were employed.

The results (figure 11a, b)show both pressures P0 and Q̄, as well as properties
analogous to those of § 3.1, in this case with a1 prescribed. They also raise another
significant issue in the daughter flow (iii). There conservation of mass flux, which
holds implicitly in the planar cases addressed earlier, is more delicate in the current
symmetry-plane case because integration of (5.3a) with respect to Y , across the gap
from f3 to f4, adds an integrated contribution from W̄ . This contribution reflects the
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Figure 11. For three-dimensional branching flow: symmetry-plane results, from (5.3a–c), for
the shaping (2.2). Wall shears τ1, τ2, spanwise pressure contribution Q̄ and streamwise pressure
gradient P ′

0 are shown versus x, in regions (i)–(iii), for (a) a1 = 3
2
, (b) a1 = 3.

loss or gain of mass flux to or from the spanwise direction and hence interaction with
the flow outside the symmetry plane. In the results shown here the flux represented
by the Y -integral of U across the gap in (iii) is set as constant, as just one example.
Other results show that varying the flux can affect the downstream development in
(iii) substantially. The flux issue does not arise in the mother flow of regions (i),(ii)
because of the absence of an upper wall there.

Figure 11(a, b) is for the same geometry as in figure 4 but in the symmetry plane,
with h1 = 1

2
, h2 = 3. Figure 11(a) has the relative height a1 prescribed as 3/2. Here

the variation of the effective spanwise wall shear τ2 (≡ ∂W̄/∂Y ) at the walls indicates
that fluid is drawn inwards spanwise in the lead-up to branching but outwards on the
front face of the constriction in (ii) followed by inwards thereafter. This is in keeping
with the changes in sign of the spanwise pressure contribution Q̄ as well as the
streamwise wall shear τ1, which shows only forward motion. Within the daughter (iii)
comparatively high wall shear is provoked by the strong suction involved. Figure 11(b)
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is for a1 increased to 3. This yields similar but accentuated behaviour, including higher
wall shears and more favourable streamwise pressure gradients in (iii) with increased
negative spanwise gradients acting, although the spanwise motion in (iii) changes from
outward near the branch opening to inward further downstream. The relief of the
motion into the spanwise direction causes interesting contrasts with the corresponding
planar-flow results of figure 4, leaving the spanwise wall shear much less reduced from
its incident value during the lead-up to branching in the current longitudinal case.

For large values of a1 the predictions (2.6)–(2.8) again hold good, accompanied by
a re-scaling with respect to the pressure to account for the total longitudinal response.

5.3. Stronger suction pressures

Given that the results for large a1 and enhanced pressure drops apply whether the
local branching flow is steady or unsteady, two- or three-dimensional, we consider
further strengthened suction pressures next. The geometry is as before however and
the steady planar case is again our focus.

New physical effects enter if the typical pressure drop in the mother flow streaming
over the branching is increased to the size Re−1/3, as opposed to Re−2/3 in the
previous theory. The reason is that, on the broader lateral scale of order unity in y

mentioned earlier, inviscid velocity perturbations of O(Re−1/3) must be induced; these
perturbations include a wall slip velocity of that same order, which therefore violates
the implied assumption in (2.3d) of a much smaller slip velocity. This increased
pressure is produced by the relative height a1 increasing to the order Re1/6 in view
of (2.2), so that the y-scale of entrained fluid rises to Re−1/6a2 with a2 now of order
unity. Thus here

u − y ∼ p ∼ Re−1/3, with entrained y = Re−1/6a2 [in mother].

Along with this, (2.7) and (2.8) suggest that the pressures π− and P∞ in the daughter
(iii) both increase by a factor Re2/3, although the difference between them is not
so large. The increase of typical pressures in (iii) is such that, with the present
strengthened suction, the unscaled pressure values p immediately after the opening
‘jump’ and at the downstream end of (iii) become of order unity. So, in contrast with
the preceding equation, here

p ∼ 1 [in daughter].

These perhaps surprisingly large pressures are generated because the entry velocity
into the O(Re−1/3) thick daughter just beyond the ‘jump’ is uniform and must be of
O(1) magnitude (in fact, 1

2
a2

2h
−1); this magnitude is required to accommodate the

O(Re−1/3) mass flux ψ of all the fluid below the dividing streamline whose distance
from the lowermost wall is of order Re−1/6. Further, the downstream end pressure P∞
can now be identified with the value − 1

8
a4

2h
−2 since the difference between the entry

and end pressures within the daughter is small.
The broader O(1) inviscid region is taken to remain immersed in the incident shear

flow (u = y) of the mother, so that there is no influence from an uppermost wall for
example. Then the present suction level provokes an O(Re−1/3) perturbation in the
stream function, say Re−1/3ψ̃ , forcing an expansion of the form

[u, ψ, p] =
[
y, 1

2
y2, 0

]
+ Re−1/3[ũ, ψ̃, p̃] + · · · (5.4a)

in the O(1) region. Here ψ̃ satisfies Laplace’s equation because of the incident uniform
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vorticity, subject to boundedness in the far field and to the wall conditions of zero
ahead of x = x1 but of a positive uniform value K(= 1

2
a2

2) beyond x1. The uniformity
of K is due partly to the strong abrupt entrainment into the daughter (as if into a point
sink) via the jump at the branch opening and partly to the lack of any geometrical
effect from either of the wall shapes f1orf2 in this comparatively large-scale inviscid
region. Specifically, K = 1

2
a2

2 from extension of § 2.4 and since P̄ is negligible. The

solution for ψ̃ is simply K[π − tan−1(y/(x − x1))]/π, and the resultant slip velocity
near the wall is therefore Re−1/3 times K/(π(x1 − x)). This is positive upstream of the
daughter and negative downstream, in line with an acceleration towards the branch
opening in both cases.

Hence the wall-layer description now remains as in (2.1), (2.3) except that (2.3d) is
replaced by

U − Y → K

π(x1 − x)
as Y → ∞ (5.4b)

because of the extra induced slip from the strong suction. Reduced suction lessens
K , leaving the upstream influence ahead of the branch insubstantial as before. With
K being of order one and positive, however, (5.4b) represents a favourable effect
on the upstream flow that counters the adverse one from the lead-up shape f1 seen
earlier. Compare the effects in Smith (1978) and Ovenden (2001). Indeed, a Prandtl
transposition shows the solution to depend only on the difference function

K/(π(x1 − x)) − f1(x), (5.5)

implying that the suction-pressure effect K is bound to dominate sufficiently close to
the branch opening, irrespective of whether the wall shape f1 dominates upstream.

The numerical results in figure 12(a, b) for region (i) confirm the influence of the
suction parameter K . They show in particular the wall-layer flow becoming very
attached as x approaches x1 from upstream. The response there is analysable as in
Smith (1978), as is the increase of upstream influence when the value of K increases.
This is in line with the difference function (5.5). In particular, figure 12(a) shows the
wall shear τ and pressure P for the branching lead-up shape in (2.2) with h1 = 1

2
again

and K varying from zero to 2. The increasingly favourable effect on τ and P is such
that for K = 2 the wall shear produced always exceeds the incident upstream value.
Figure 12(b) has h1 increased to 1, which forces the lead-up flow to separate when
K is zero. Higher K values however suppress the separation and lead to responses
similar to those in figure 12(a). On the other hand, downstream in region (ii) for
x > x1 the suction-pressure effect K is adverse and indicates flow reversal occurring.
The geometrical effect of the wall shape, here f2, enters in a fashion similar to that
in (i), but the upper half of the starting velocity profile for (ii) has a uniform shear
(in view of the estimates in § 2.5) added to the K term exactly as in (5.4b) where U

is positive. This forces the lower half of the starting flow in (ii) to be reversed and
unknown. Some mother fluid therefore passes into region (ii) beyond the opening x1

but is then decelerated and drawn back into the ‘jump’ region and thence into the
branch (iii). See results in figure 12(c). The internal structure of the ‘jump’ itself

Figure 12. Flow in the mother tube (i), (ii) for higher pressure drops (§ 5.3). In (i), the effect
of suction parameter K on τ and P , for the wall shape of (2.2); (a) with h1 = 1

2
(the results

for zero K are identical with those of figure 4(a, b) in (i)), (b) with h1 = 1. In (ii), (c) shows
the velocity profiles for the case K = π at the x − x1 values indicated, with f2 zero.
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then needs more study although this may disturb the current ‘jump’ conditions very
little, a matter addressed in Ovenden (2001). The upstream and downstream influence
spreads monotonically, over distances ∝ K3/4, as the suction-pressure parameter K

continues to increase.

6. Further comments
How the pressure adapts was one of the main motivations for the present work. For

the lower pressure drops studied prior to § 5.3, the work highlights the importance
of the branch entrance region where a rapid local streamwise variation or ‘jump’
occurs in the induced pressures and velocities. In that region local to the entrance
the upstream influence from the daughter branch begins, and the mother–daughter
interaction is concentrated. This holds whether the motion is steady or unsteady,
two- or three-dimensional. The ‘jump’, which generates an abrupt rise in pressure in
the streamwise mother-tube flow but an abrupt fall into the daughter, is the key to
explaining the influence of the daughter end pressure.

The other main motivation was to compare direct numerical simulations with the
theory. The present comparisons (§ 4.2) point to reasonable agreement at moderate
Reynolds numbers Re, as well as confirming the rapid variation in flow properties
implied by a ‘jump’ at the branch entrance, at such Re values.

For the higher pressure drops of § 5.3, the corresponding strengthened suction
not only draws increased amounts of mother fluid into the daughter but also yields
additional upstream influence, stretching into the mother flow ahead of the branching.
The feedback effect is favourable and opposes the adverse effects of the upstream
wall shaping. This is encapsulated in the difference function (5.5). Further increased
pressure drops yield enhanced upstream and downstream influence. These in particular
should prevent upstream separation from arising, even for negative and positive slopes
of order unity in the respective wall shapes ahead of and beyond the side branching
(e.g. with a tube dilation ahead followed by constriction beyond). An analogue of
the feedback effect of § 5.3 applies also for unsteady and three-dimensional flows as
in § § 5.1,5.2, due to the quasi-planar quasi-steady nature of the ‘jump’. Sufficiently
strong pulsations however lead to finite-time breakdown (Li et al. 1998), while in
three-dimensional motion fluid can enter the daughter branch from the sides.

This work suggests follow-up research. (i) The impact of an upper wall, or an outer
stream, along with the side branch, is felt through an upper boundary condition in the
outer zone discussed in § 5.3 (specifically on ψ̃ in (5.4a)) and an extra viscous layer in
the upper-wall case. Whereas the downstream end pressure cannot be pre-set within
the mother flow for the unbounded configuration of the current study, where the
incident shear is set instead, the presence of an upper wall allows such pre-setting of the
downstream pressure. A similar approach extends in three dimensions to the impact
of an entire pipe wall on side-branching motion. (ii) The extension to multi-branching
flows is of interest in terms of arteriovenous malformations and separation-free flow
design, with or without the opposite-wall effect. Likewise, networks and successive
branchings have an interactive flow structure similar to that here, subject to the
slenderness assumption. Modelling of graft flows requires the daughter end pressure to
be equated with the downstream mother pressure as the graft tube rejoins the mother
tube. (iii) Concerning non-physiological applications, the opposite-wall interaction
above is relevant to obtaining global solutions for unsteady wake-passing phenomena
in rows of turbine blades and for the flow past multiple undertrays deployed under
a car body. (iv) More progress for three-dimensional motions poses a considerable
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numerical challenge as described in § 5.2. The crossover, between mother fluid that
does and does not enter the daughter branch, is passive towards the spanwise edges of
the branch but the crossover positions are unknown in advance. More understanding
of separation in these branching flows also represents a challenge, particularly of the
structure of the ‘jump’ process with reversed flow at the daughter entrance.

Thanks are due to Dr. C. Atkin for his interest and encouragement, to Dr. A.
Seifailian for suggesting certain references, and to EPSRC and DERA Farnborough
for support of N.C.O. through a CASE award.
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